Портал по тригенерации, когенерации и мини-ТЭЦ

Распределенная генерация в электроэнергетических системах

Международная научно- практическая конференция « Малая энергетика-2005»

Воропай Н.И. (Институт систем энергетики им. Л.А. Мелентьева СО РАН, Иркутск, Россия)

Предпосылки и тенденции.

Электроэнергетика экономически развитых стран мира, в том числе, бывшего СССР, интенсивно развивалась в течение ХХ века главным образом путем повышения уровня централизации электроснабжения при создании все более мощных электроэнергетических объектов (электростанций, ЛЭП). Следствием этого явилось формирование территориально распределенных протяженных электроэнергетических систем (ЭЭС). Это позволило достичь существенного экономического эффекта, повысить надежность электроснабжения и качество электроэнергии [1, 2 и др.].

С начала XX века технологии традиционных паротурбинных агрегатов тепловых и атомных электростанций развивались по пути использования все более высоких параметров пара, это требовало применения более совершенных материалов котлов и турбин, при этом имела место тенденция увеличения единичной мощности установок. Все отмеченное позволяло улучшать технико-экономические параметры установок - удельные капиталовложения и постоянные текущие издержки на единицу мощности и удельные расходы топлива на единицу вырабатываемой электроэнергии. Указанная тенденция укрупнения агрегатов наблюдалась и в гидроэнергетике, хотя и в меньшей мере.

В 1980-е годы эта тенденция принципиально изменилась вследствие появления высокоэффективных (до 55-60 % КПД) газотурбинных и парогазовых установок (ГТУ и ПГУ) широкого диапазона мощностей, в том числе малых - от единиц до одного-двух десятков МВт. Отличительной особенностью таких установок, особенно малых, является их высокая заводская готовность, что позволяет вводить их в эксплуатацию за период в пределах года [3-5]. Одновременно появился большой ассортимент мини- и микро- ГТУ (от долей кВт до нескольких десятков кВт). На основе малых ГТУ начали сооружаться малые ГТУ-ТЭЦ для комбинированной выработки электроэнергии и тепла.

К малой энергетике относятся и многие типы энергетических установок на возобновляемых источниках энергии (ВИЭ), прежде всего ветроэнергетические установки (ВЭУ) [6,7]. Малые ГТУ, ПГУ и ВЭУ устанавливаются непосредственно у потребителей и подключаются к распределительной электрической сети на напряжениях 6-35 кВ. Эти установки получили название "распределенная генерация" [8-10 и др.].

Главными факторами, стимулирующими развитие распределенной генерации, являются:

· адаптация потребителей к рыночной неопределенности в развитии электроэнергетики и в ценах на электроэнергию; это способствует снижению рисков дефицита мощности и повышению энергетической безопасности;

· повышение адаптационных возможностей самих ЭЭС к неопределенности рыночных условий развития экономики и снижение тем самым инвестиционных рисков;

· появление новых высокоэффективных энергетических технологий (ГТУ и ПГУ);

· рост доли газа в топливоснабжении электростанций;

· ужесточение экологических требований, стимулирующее использование ВИЭ (гидроэнергии, ветра, биомассы и др.) при протекционистской политике государств.

Масштабы развития.

Развитие малых ГТУ-ТЭЦ происходит достаточно интенсивно. В частности, в странах ЕС прогнозируется рост суммарной мощности ГТУ-ТЭЦ (прежде всего небольшой мощности) с 74 ГВт в 2000 г. до 91-135 ГВт в 2010 г. и 124-195 ГВт в 2020 г. (в зависимости от энергетической политики ЕС), что составляет 12% от суммарной генерирующей мощности стран ЕС в 2000 г., 13-18% - в 2010 г., 15-22% - в 2020 г. [11].

В российских условиях уже в настоящее время малые ГТУ-ТЭЦ оказываются эффективными. Расширение сферы газификации на средние и малые города и поселки городского типа, создание рынка высокоэкономичных, с коротким сроком сооружения, быстроремонтируемых установок малых ГТУ-ТЭЦ обеспечивают их активное вовлечение в структуру генерирующих мощностей регионов страны. Так, в Астраханской области при нынешнем уровне генерации в 1060 МВт из 550 МВт электрической мощности, планируемой к вводу до 2020 г., 65,5 МВт должны составить малые ГТУ-ТЭЦ, а в более удаленной перспективе их потенциал может достигнуть 185-200 МВт. В Томской области при существующем уровне генерации в 1804 МВт к 2020 г. предполагается ввести 246 МВт, в том числе 130 МВт (53%) за счет малых ГТУ-ТЭЦ. При этом используется отечественное оборудование [12].

Оценки показывают, что в перспективе потенциальные возможности сооружения малых ГТУ-ТЭЦ вместо неэкономичных устаревших котельных в городах и поселках могут составить суммарную электрическую мощность в 100 ГВт, количеством 12900 штук, средней единичной мощностью 7-8 МВт, а в максимальном варианте -соответственно 175 ГВт, 84000 штук, средней единичной мощностью 2-3 МВт [5]. Реалистичные прогнозы дают в целом по стране 25-35 ГВт к 2020 г. и 35-50 ГВт к 2050 г. малых ГТУ-ТЭЦ, т.е. до 10-15% от суммарной установленной мощности генерации [13].

В последние годы использование ВИЭ для производства электроэнергии получило во многих странах значительное развитие. Западно-европейские страны планируют увеличить производство электроэнергии на базе ВИЭ к 2010 г. в среднем более, чем на

10 %, особенно за счет использования энергии ветра (рис. 1) [6]. В настоящее время суммарная установленная мощность работающих в мире ВЭУ составляет более 31 ГВт [14], наибольшая по мощности единичная ВЭУ - 4,5 МВт - введена в Германии [15]. Основные вводы ВЭУ приходятся на европейские страны - Германию, Данию, Великобританию, Нидерланды, Испанию, Швецию, Италию. Потенциал ветроэнергии имеется и в России [4, 7].

Следует отметить, что в 2000 г. в России работали 12 ВЭУ (суммарная мощность 7,2 МВт), 2 геотермальные установки (23 МВт), 59 малых ГЭС в диапазоне мощностей 0,5-30 МВт (513 МВт), около 100 мини-ГЭС мощностью менее 0,5 МВт (40 МВт), 11 установок на биомассе (523 МВт). Все это составляет всего 0,5 % установленной мощности электростанций России. Согласно энергетической стратегии России на период до 2020 года [16] потенциал возобновляемых энергоресурсов в стране достаточно велик (табл. 1), однако при этом установленная мощность ВИЭ прогнозируется лишь в следующих объемах: ВЭУ - 1-1,2 ГВт; малые и мини-ГЭС - 2,5-3 ГВт, геотермальные установки - 0,25-0,3 ГВт, что составляет весьма незначительную долю от суммарной генерации на этот период.

Между тем, в мире накоплен достаточно богатый опыт экономического стимулирования ВИЭ [17]. Основными формами такой поддержки являются:

субсидии и кредиты по низким процентным ставкам; гарантии по банковским ссудам;

установление фиксированных закупочных цен на энергию, вырабатываемую на основе ВИЭ;

освобождение от уплаты налога на часть прибыли, инвестированной в нетрадиционную энергетику; - предоставление режима ускоренной амортизации; финансирование НИОКР в области нетрадиционной энергетики.

Опосредованно стимулирующее воздействие на использование ВИЭ оказывают такие инструменты экологической политики как плата за загрязнение окружающей среды, за выброс парниковых газов, другие "зеленые" налоги.

Возобновляемые источники энергии наиболее широко используются в странах с активным экологическим регулированием, которое включает систему законодательных, административных и экономических инструментов. Эти инструменты применяются на государственном и муниципальном уровнях для стимулирования сокращения выбросов (не только энергетическими установками). Такой подход типичен для стран Скандинавии, Дании, Австрии, Нидерландов, Германии, США.

Специфические подходы к экологической политике у развивающихся стран (Китай, Индия и др.), которые сочетают прямое административное регулирование и косвенные экономические стимулы. Тем не менее, экономическое стимулирование инвестиций в ВИЭ и в этих странах становится все более важным.

Стимулирующая политика в отношении ВИЭ начинает разрабатываться и в России. Так, группа американских и российских компаний разработала пилотный проект промышленной ветроэлектростанции мощностью 75 МВт, которая войдет в ЭЭС Санкт-Петербурга и Ленинградской области. ВЭС будет состоять из 50 ветроустановок мощностью по 1,5 МВт каждая производства компании GE Wind Energy [18]. Завершена разработка ТЭО, строительство станции начнется во 2-м полугодии 2005 г.

Строительство ВЭС поддерживает правительство Ленинградской области, которое готово предоставить участникам проекта налоговые льготы, в том числе на недвижимость и прибыль. Кроме этого, были внесены поправки в проект регионального закона "О поддержке использования нетрадиционных возобновляемых энергетических ресурсов в Ленинградской области", а также предусмотрены налоговые льготы для промышленных потребителей электроэнергии, вырабатываемой с помощью ветра (и иных возобновляемых источников), которые способны покрыть разницу между тарифами на электроэнергию из традиционных и нетрадиционных источников. Реализация проекта позволит также разработать нормативные документы и методики проектирования аналогичных ВЭС и создать механизм гарантированного возврата заемного капитала, привлекаемого для финансирования сооружения ВЭС.

Электроэнергетические системы будущего символически можно представить как на рис.2, где 1 - промышленные потребители, 2 - социально-бытовые потребители, 3 -традиционные крупные электростанции, 4 - малые ГТУ-ТЭЦ, 5 - мини- и микро-ГЭС, 6 - ВЭУ, 7 - солнечные электростанции, 8 - топливные элементы, 9 - поршневые двигатель-генераторы, 10 - накопители энергии, 11 - биогаз. Как видно из этого рисунка, ЭЭС будущего должны сочетать крупные источники электроэнергии, без которых проблематично электроснабжение крупных потребителей и обеспечение целесообразных темпов роста электропотребления, а также распределенную генерацию. Крупные электростанции имеют трансформацию на напряжения 110 кВ и выше и выход в основную сеть высших напряжений, осуществляющую транспорт электроэнергии до крупных центров потребления.

В то же время, как следует из вышеизложенного, должны получить существенное развитие установки распределенной генерации, в том числе на ВИЭ, которые устанавливаются в распределительной сети 6-35 кВ. Третий уровень составят мини- и микро-установки (мини- и микро-ГЭС, ВЭУ, солнечные электростанции, топливные элементы и т.п.), которые подключаются на напряжение 0,4 кВ и устанавливаются у небольших потребителей, например, в отдельных домах или даже в квартирах.

Технические особенности и проблемы.

Подобная трансформация ЭЭС будущего придает им положительные качества, однако создает и определенные проблемы. Основные изменения в ЭЭС в связи с появлением распределенной генерации сводятся к следующим:

  • Развитие распределенной генерации разгружает как основную, так и распределительную сеть, что способствует снижению потерь электрической энергии повышению надежности и устойчивости ЭЭС и вносит дополнительные возможности в реализацию рынков электроэнергии ,освобождая пропускные способности связей [19-24].
  • В то же время, распределенная генерация - это новые элементы ЭЭС, во многом с новыми динамическими характеристиками и возможностями управления. Так, ВЭУ имеют переменный режим работы, который при больших суммарных мощностях ВЭУ может создавать проблемы при управлении режимами ЭЭС, регулировании частоты, требуется резервирование по мощности до 50% от мощности ВЭУ и др. [22, 25-27]. При очень сильном ветре ВЭУ останавливаются, что при больших их суммарных мощностях может оказаться экстраординарным возмущением в ЭЭС, могущим привести к нарушению устойчивости системы и каскадному развитию аварии [21, 24, 27]. Малые ГТУ имеют уменьшенную, по сравнению с традиционными агрегатами тепловых и гидравлических электростанций, постоянную инерции, отличные от больших агрегатов характеристики систем регулирования [22, 28, 29]. К настоящему времени имеются некоторые исследования влияния распределенной генерации на свойства ЭЭС в установившихся и переходных режимах, однако эта проблема находится еще в начальной стадии изучения и более-менее уверенные выводы и рекомендации делать пока преждевременно.
  • Неоднозначно и влияние распределенной генерации на качество электроэнергии по уровням напряжений. С одной стороны, наличие распределенной генерации в распределительной сети позволяет более стабильно поддерживать уровни напряжений в узлах за счет возможностей этих генераторов по генерированию реактивной мощности, в отличие от традиционных распределительных сетей, в которых потери напряжения тем больше, чем дальше от питающей подстанции высокого напряжения. С другой стороны, обнаружены явления, получившие название фликкера в англоязычной литературе и связанные с быстрыми колебаниями напряжения. Характерно, что фликкер развивается при резком снижении напряжения в узле присоединения малого генератора, особенно если генератор асинхронный [22,26].
  • Неоднозначно также влияние распределенной генерации на генерацию высших гармоник в системе. С одной стороны, наличие распределенных генераторов снижает их уровень. Но, с другой стороны, многие малые установки, например, ВЭУ, высокочастотные ГТУ, подключаются к распределительной сети через преобразователи переменного тока в постоянный и обратно, которые генерируют в сеть высшие гармоники [22, 26, 29].
  • Подключение источников распределенной генерации к распределительной сети увеличивает токи короткого замыкания, что может потребовать замены коммутационных аппаратов, изменения настроек защит и др. [22, 26, 29].
  • Появление распределенной генерации усложняет диспетчерское управление ЭЭС, смещая его функции на распределительную сеть. Проблема при этом заключается в высокой неопределенности режимов работы распределенной генерации вследствие неравномерности загрузки агрегатов, отсутствия текущей информации об их работе и др. В последнее время появился ряд разработок, в которых предпринимаются попытки решения этой проблемы на основе распределенной системы диспетчерского управления с использованием Интернет-технологий [22, 30]. В связи с этим появилось понятие "виртуальная электростанция", которая условно объединяет распределенную генерацию посредством распределенной Интернет-системы управления.
  • Распределенная генерация усложняет также систему релейной защиты и автоматики, противоаварийного управления ЭЭС [22, 23, 31, 32]. Распределительная сеть с появлением в ней установок распределенной генерации приобретает черты основной сети, т.е. в ней возникают проблемы устойчивости и др., что требует разработки устройств автоматики, аналогичных основной сети. При потере электроснабжения от питающей подстанции основной сети имеется возможность выделить установку распределенной генерации на близкую по мощности нагрузку, что обеспечит электроснабжение ответственных потребителей. Эта проблема в англоязычной литературе получила название "Islanding", она достаточно активно изучается [22, 24, 26, 29] и имеет ряд составляющих, в частности: определение состава потребителей, подключаемых к малому генератору при выделении; разработка принципов и конкретных устройств соответствующей автоматики; учет конкретных условий работы распределенных генераторов и др.
  • Следует отметить и такой негативный фактор ВЭУ, как генерирование инфразвука при вращении лопастей. Эта проблема во многом решается за счет специальной конструкции лопастей [22, 24, 29].
  • Все перечисленные особенности распределенной генерации требуют тщательного изучения свойств и характеристик различных установок, разработки их математических моделей работы в различных режимах. Требуется разработка новых методов анализа режимов работы систем электроснабжения, включающих распределенную генерацию, их надежности, устойчивости и т.п. Необходима также разработка математических моделей и методов планирования развития систем электроснабжения и ЭЭС с учетом распределенной генерации [22, 33, 34 и др.].

Заключение

1. Тенденции развития электроэнергетики в мире связаны не только с ростом масштабов производства электроэнергии на традиционных крупных электростанциях, но и с увеличением доли распределенной генерации. Эти тенденции определяются необходимостью адаптации потребителей и развития ЭЭС к рыночной неопределенности, появлением новых высокоэффективных энергетических технологий, ростом доли высококачественных видов топлива, ужесточением экологических требований, стимулирующем использованием ВИЭ при протекционистской политике государств.

2. Мировые тенденции органичного сочетания централизованной и распределенной генерации характерны и для России. При этом, если экономические условия ля развития малых ГТУ-ТЭЦ достаточно приемлемы и в настоящее время, то для развития распределенной генерации на ВИЭ пока не созданы необходимые экономические, законодательные и организационные условия. Для России создание таких условий является одной из важнейших задач.

3. Рост доли распределенной генерации в ЭЭС не только имеет положительные стороны, но и создает определенные технические проблемы, которые связаны с изменением свойств систем, возможностей управления ими в нормальных и аварийных условиях. Эти проблемы решаемы, однако при этом усложняется диспетчерское и автоматическое управление ЭЭС, требуется разработка новых математических моделей по обоснованию развития ЭЭС и систем электроснабжения, анализу их режимов и управлению ими.

Литература

1. Комплексные проблемы развития энергетики СССР / Л.С.Беляев, Ю.Д.Кононов, А.А. Кошелев и др.; Отв. ред. А.А.Макаров и А.А.Папин. Новосибирск: Наука, 1988, 288 с.

2. Энергетика XXI века: Условия развития, технологии, прогнозы / Л.С.Беляев, А.В. Лагерев, В.В. Посекалин; Отв. ред. Н.И.Воропай. Новосибирск: Наука, 2004, 386 с.

3. Воропай Н.И. Малая энергетика в рыночной среде: анализ требований и условий развития// ТЭК, 2003, № 2, с. 97-98.

4. Усачев И.Н., Историк Б.Л., Школянский Ю.Б., Лунаци М.А. Малая и нетрадиционная энергетика России // Новости электротехники, 2003, № 3, с. 54-57; № 4, с. 77-79.

5. Фаворский О.Н., Леонтьев А.И., Федоров В.А., Мильман О.О. Эффективные технологии производства электрической и тепловой энергии с использованием органического топлива // Теплоэнергетика, 2003, № 9, с. 19-21.

6. Bayegan M.A. Vision of the Future Grid // IEEE Power Engineering Review, 2001, Vol.21, №12, p. 10-12.

7. Безруких П.П. Нетрадиционные возобновляемые источники энергии // Энергетическая бе-зопасность и малая энергетика. XXI век. Сб. докл. Всерос. н.-т. конф. Санкт-Петербург, 3-5 декабря 2002 г., с. 30-45.

8. Ackermann Th., Andersson G., Soder L. Distributed Generation: A Definition // Electric Power System Rescarch, 2001, Vol.57, № 4, p. 135-204.

9. Dugan R.C., McDermont Th.E. Distributed Generation // IEEE Industry Application Magazine, 2002, Vol.33, № 2, p. 19-25.

10. Development of dispersed generation and consequences for power systems / CIGRE Working Group C6/01 // Electra, 2004, № 215, p. 39-49.

11. The European Cogeneration Study. EU-Project "Future COGEN", № 4. 10301/P/99- 169/Final Publishable Report, Brussels, 2001, 88 p.

12. Карасевич А.М., Сеннова Е.В., Федяев А.В., Федяева О.Н. Эффективность развития малых ТЭЦ на базе газотурбинных и дизельных энергоустановок при газификации регионов // Теплоэнергетика, 2000, № 12, с.35-39.

13. Беляев Л.С., Воропай Н.И., Кощеев Л.А. и др. Долгосрочные тенденции развития электроэнергетики мира и России //Изв. РАН. Энергетика, 2004, № 1, с. 3-13.

14. Fairley P. Steady as the Blows // IEEE Spectrum, 2003, № 8, p. 35-39.

15. Slootweg J.G., Kling W.L. Is the Answer Blowing in the Wind. // IEEE Power and Energy Magazine, 2003, Vol. 1, № 6, p. 26-33/

16. Энергетическая стратегия России на период до 2020 года / Приложение к общ.-дел. журналу "Энергетическая политика". М.:ГУ ИЭС, 2003, 136 с.

17. Клавдиенко В.П. Экономические стимулы использования возобновляемых источников энергии // Энергия: экономика, техника, экология, 2004, № 6, с. 14-19.

18. Запад финансирует российскую ветроэнергетику // Мировая энергетика, 2005, № 3, с.92.

19. Еремин Л.М. О роли локальных генерирующих источников небольшой мощности на рынке электроэнергии // Энергетик, 2003. № 3, с.22-25.

20. Chiradeja P., Ramakumar R. An Approach to Quantify the Technical Benefits of Distributed Generation // IEEE Trans. Energy Conversion, 2004, Vol. 19, № 4, p.764-773.

21. Donelly M.R., Dagle J.E., Trudnowski D.J., Riders G.J. Impact of the Distributed Utility on Transmission System Stability // IEEE Trans. Power Systems, 1996, Vol.11, № 2, p.741-746.

22. Jenkins N., Allan R., Grossley P., Kirschen D., Strbac G. Embedded Generation. London; IEE, 2000, 273 p.

23. Воропай Н.И., Ефимов Д.Н. Требования к противоаварийному управлению ЭЭС с учетом изменения условия их развития и функционирования // Надежность либерализованных систем энергетики. Новосибирск: Наука, 2004, с.74-84.

24. Batrinu F., Chicco G., Pomrub R., Postolache P., Toader C. Current Issues on Operation and Management of Distributed Resources // 5th Int. World Energy System Conf., Oradea, Pomania, May 17-19, 2004, p.31-36.

25. Дмитриева Г.А., Макаревский С.Н., Хвощинская З.Г. Результаты моделирования работы неуправляемой ветроэлектрической установки в энергосистеме большой мощности // Электричество, 1998, № 8 , с. 19-24.

26. Barker Ph. P., De Mello R.W. Determining the Impact of Distributed Generation on Power Systems: Part 1 - Radial Distribution Systems // 2000 IEEE PES Summer Meeting, Seattle, WA, USA, July 11-15, 2000, p.222-233.

27. Dany G. Impact of Inercasing Wind Generation on the Electricity Supply System // IAEW-FGE-Annual Report 2003, Aachen, Germany, 2003, p. 101-103.

28. Гуревич Ю.Е., Мамиконянц Л.Г., Шакарян Ю.Г. Проблемы обеспечения надежного электроснабжения потребителей от газотурбинных электростанций небольшой мощности // Электричество, 2002. № 2, с.2-9.

29. Papathanassiou S.A., Hatziargyriou N.D. Technical Requirements for the Connection of Dispersed Generation to the Grid // 2001 IEEE PES Summer Meeting, Vancouver, Canada, July 15-19, 2001, p.134-138.

30. Jimeno J., Laresgoiti I., Oyarzabal J., Stene B., Bacher R. Architectural Framework for the Integration of Distributed Resources // 2003 IEEE Bologna Power Tech Conference, Bologna, Italy, June 23-26, 2003, p.91-96.

31. Фишман В. П. Построение систем РЗиА при наличии собственных источников электроэнергии у потребителей // Новости электротехники, 2002, № 6(18), с.34-37.

32. Funabashi T. Study on Protection and Control of Dispersed Generation // 2001 IEEE PES Summer Meeting, Vancouver, Canada, July 15-19, 2001, p. 131-133.

33. Meliopoulos A.P.S. Distributed Energy Sources: Neesds for Analysis and Design Tools // 2001 IEEE PES Summer Meeting, Vancouver, Canada, July 15-19, 2001, p.143-147.

34. Hatziargyriou N.D., Donnelly M., Papathanassiou S.A., Pecas Lopes J.A. e.a. Modeling New Forms of Generation and Storage // Electra, 2001, № 195, p.55-63.

35.